DETERMINATION OF AIR TEMPERATURE ON SUPPLY COIL (use as input in the table)

$$
T_{\text {in ,sup.coil }}=T_{\text {indoor }} *\left(1-\frac{x}{100}\right)+T_{\text {outdoor }} * \frac{x}{100}
$$

Where:
$T_{\text {in sup.coil }}$ is the temperature that has to be used as input for the table of the air temperature on supply coil data set
$T_{\text {indoor }}$ is the temperature of the indoor ambient
$T_{\text {outdoor }}$ is the temperature of the of the outdoor ambient
For unit with dampers, x is the amount (in \%) of the fresh air. As factory default this is set to 30%, therefore the above calculation is:
(e.g. with $T_{\text {indoor }}=27^{\circ} \mathrm{C}$ and $T_{\text {outdoor }}=35^{\circ} \mathrm{C}$)

$$
T_{\text {in }, \text { sup.coil }}=T_{\text {indoor }} * 0.7+T_{\text {outdoor }} * 0.3=27 * 0.7+35 * 0.3=29.4^{\circ} \mathrm{C}
$$

```
            DETERMINATION OF AIR TEMPERATURE ON THE EXTERNAL COIL (use as input in the table)
or units basic units and two dampers units, the thermodynamic heat recovery on the external coil is not present. For this reason, use:
                                    Tin,ext.coil }=\mp@subsup{T}{\mathrm{ outdoor}}{
For three dampers units, the thermodynamic heat recovery on the external coil is present. For this reason, use:
T in,ext.coil }=\mp@subsup{T}{\mathrm{ indoor }}{}*\frac{\mp@subsup{x}{\mathrm{ exhaust }}{}}{100}+\mp@subsup{T}{\mathrm{ outdoor }}{}*(1-\frac{\mp@subsup{x}{\mathrm{ exhaust }}{}}{100}
Where:
Tin,ext.coll is the temperature that has to be used as input for the table of the air temperature on the outdoor coil data set
T Indoor is the temperature of the indoor ambient.
T
```



```
                                    \mp@subsup{e}{\mathrm{ exhaust }}{}=\frac{\mp@subsup{V}{\mathrm{ exhaust }}{}}{\mp@subsup{V}{\mathrm{ axial }}{}}=\frac{x*\mp@subsup{V}{\mathrm{ intake }}{}}{\mp@subsup{V}{\mathrm{ axial }}{}}
Where:
x is the amount (in %) of the fresh air. As factory default this is set to 30%
Vintake is the return air flow. As factory default, the return air flow is equal to the supply air flow.
(e.g. with }\mp@subsup{T}{\mathrm{ indoor }}{}=2\mp@subsup{7}{}{\circ}\textrm{C},\mp@subsup{T}{\mathrm{ outdoor }}{}=3\mp@subsup{5}{}{\circ}\textrm{C},x=30%,\mp@subsup{V}{\mathrm{ intake }}{}=4950\textrm{mc}/\textrm{h},\mp@subsup{V}{\mathrm{ axial }}{}=11500\textrm{mc}/\textrm{h}
    Tin,\mathrm{ ext.coil }=\mp@subsup{T}{\mathrm{ indoor }}{}*\frac{\mp@subsup{x}{\mathrm{ exhaust }}{}}{100}+\mp@subsup{T}{\mathrm{ outdoor }}{}*(1-\frac{\mp@subsup{x}{\mathrm{ exhaust }}{}}{100})=\mp@subsup{T}{\mathrm{ indoor }}{}*\frac{\frac{x*\mp@subsup{V}{\mathrm{ intake }}{}}{\mp@subsup{V}{\mathrm{ axial }}{}}}{100}+\mp@subsup{T}{\mathrm{ outdoor }}{}*(1-\frac{\frac{x*\mp@subsup{V}{\mathrm{ intake }}{}}{\mp@subsup{V}{\mathrm{ axial }}{}}}{100}}
    =T Tidoor }*\frac{\frac{30*4950}{11500}}{100}+\mp@subsup{T}{\mathrm{ outdoor }}{}*(1-\frac{\frac{30*4950}{11500}}{100})=27*0,129+35*(1-0,129)=33,96 ' C C
```

