SERIE CF CFDM - CFDM-V

COMPUERTA CORTAFUEGOS

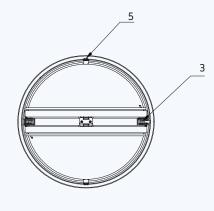
Modelo **CFDM.** Compuerta cortafuegos. Modelos El60, El90, El120. Modelo **CFDM-V.** Compuerta cortafuegos con boca de extracción. Modelo El60, El90, El120.

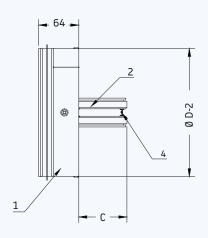
Las Compuertas cortafuegos CFDM (o clapetas) son obturadores en los sistemas de conductos de los dispositivos de aire acondicionado, que evitan la propagación de los productos de combustión y fuego de un segmento al otro mediante el cierre del conducto de aire en los puntos de las construcciones de separación de incendios. Tanto en horizontales como verticales, en función del modelo.

Características:

Clapeta de accionamiento mecánico.
Certificado CE según norma EN 15650.
Ensayo según norma EN 1366-2.
Clasificación según norma EN 13501-3+A1.
Resistencia al fuego El60, El190, El120.
Fuga interna clase 2 según norma EN 1751.
Resistencia a la corrosión según norma EN 15650.

Condiciones de trabajo:

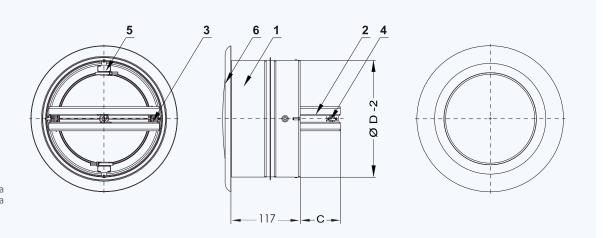

Velocidad máxima de circulación de aire: 12 m.s Diferencia de presión máxima: 1500 Pa


La circulación de aire en toda la sección de la compuerta debe mantenerse constante en toda la superficie.

El comportamiento de la compuerta no depende de la dirección del aire. Las compuertas son adecuadas para sistemas de ventilación que no contengan partículas abrasivas, químicas o adhesivas.

Están diseñadas para áreas macro-climáticas con clima templado según EN 60 621-3-3. La temperatura en el lugar puede oscilar entre -30°C y +50°C.

CFDM



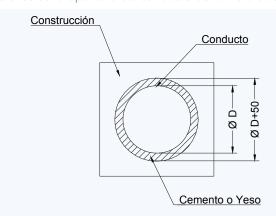
טע	C
100	15,5
125	28
160	45,5
200	72.5

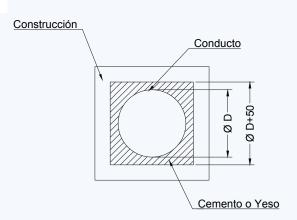
ØΝ

CFDM-V

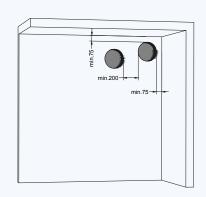
- 1. Carcasa compuerta
- 2. Cuchilla compuerta
- 3. Muelle de cierre
- 4. Fusible térmico
- 5. Clips de cierre

SERIE CF CFDM - CFDM-V


MODELOS

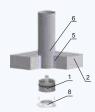

Modelo CFDM - CFDM-V

- .01 Térmico con control mecánico interno
- .11 Térmico con control mecánico interno y contacto fin de carrera
- .15 Térmico con control mecánico interno y doble contacto fin de carrera

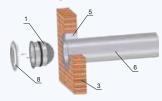

CFDM

Dimensiones de la apertura del conducto de la instalación

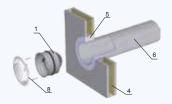
Distribución entre compuertas cortafuegos



Clasificación de compuertas


Tipo de construcción	Classificación		
Forjado min. 110 mm Hormigón min. 125 mm Hormigón Aireado	EI 90 ($h_0 - i \leftrightarrow 0$) S EI 60 ($h_0 - i \leftrightarrow 0$) S		
Muro rígido min. 100 mm	EI 120 $(v_e - i \leftarrow \rightarrow 0)$ S EI 90 $(v_e - i \leftarrow \rightarrow 0)$ S EI 60 $(v_e - i \leftarrow \rightarrow 0)$ S		
Placa de yeso. 100 mm	EI 120 $(v_e - i \leftarrow \rightarrow 0)$ S EI 90 $(v_e - i \leftarrow \rightarrow 0)$ S EI 60 $(v_e - i \leftarrow \rightarrow 0)$ S		

- 1. Compuerta cortafuego
- 2. Forjado
- 3. Muro rígido
- 4. Placa de yeso
- 5. Cemento o yeso
- 6. Conducto7. Lana de roca mineral con revestimiento de protección contra incendios
- 8. Boca de extracción


Forjado

Muro rígido

Placa de yeso

SERIE CF CFDM - CFDM-V

Tabla de Selección

Leyenda: Q = Caudal Ak = Area efectiva en m²

Vk = Velocidad efectiva en m/s Pt = Pérdida de carga en Pa LwA = Potencia sonora en dB(A)

	Diámetro mm.	100	125	160	200
Q (m ³ /h) (l/s)	Ak	0,0027	0,0056	0,0115	0,0206
100 27,8	Vk(m/s) Pt(Pa) LwA	10,3 117 58	5,0 16 44		
150 41,7	Vk(m/s) Pt(Pa) LwA	15,4 262 65	7,4 36 50		
200 55,6	Vk(m/s) Pt(Pa) LwA		9,9 64 55	4,8 10 43	
250 69,4	Vk(m/s) Pt(Pa) LwA		12,4 100 59	6,0 16 46	
300 83,3	Vk(m/s) Pt(Pa) LwA			7,2 23 50	4,0 4 39
350 97,2	Vk(m/s) Pt(Pa) LwA			8,5 32 52	4,7 6 42
400 111,1	Vk(m/s) Pt(Pa) LwA			9,7 42 55	5,4 7 44
450 125,0	Vk(m/s) Pt(Pa) LwA			10,9 53 57	6,1 9 47
500 138,9	Vk(m/s) Pt(Pa) LwA			12,1 65 59	6,7 11 48
550 152,8	Vk(m/s) Pt(Pa) LwA			13,3 78 60	7,4 14 50
600 166,7	Vk(m/s) Pt(Pa) LwA			14,5 93 62	8,1 16 52
650 180,6	Vk(m/s) Pt(Pa) LwA				8,8 19 53
700 194,4	Vk(m/s) Pt(Pa) LwA				9,4 22 55

