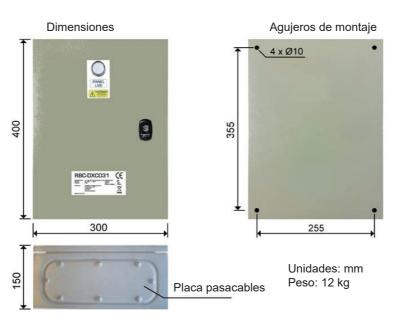
KIT DX 0/10V

Hasta 6000m³/h

Permite controlar la capacidad del sistema VRF de Toshiba directamente desde el control del climatizador, para mantener una temperatura constante de la entrada de aire exterior en el edificio: la solución más avanzada de

suministro de aire exterior. CAPACITDAD CAUDAL DE AIRE

Características


6 HP < 10 HP

Unidad de control del intercambiador DX LC / VRF	RBC-	DXC031
Caudal de aire mínimo	m³/h	2310
Caudal de aire máximo	m³/h	3960
Dimensiones (Alto x Ancho x Prof,)	mm	400 x 300 x 165
Peso	kg	8
Longitud máxima de cable (entrada analógica) (cable apantallado: 0,5 ~ 1,0 mm²)	m	200
Longitud máxima de cable (entrada digital) (cable no apantallado: 1,5 ~ 2,5 mm²)	m	100
Longitud máxima de cable (salida digital) (cable no apantallado: 1,5 ~ 2,5 mm²)	m	500
Longitud máxima de cable (TCC Link) (cable apantallado: 1,5 ~ 2,5 mm²)	m	1000
Standard rating	IP	65
Temperatura de funcionamiento/humedad	°C / RH	5-40 / 10-90
Rango de funcionamiento-Temp. «Air on» del serpentín de refrigeración	°C	15°C BH ÷24°C BH
Rango de funcionamiento - Temp. «Air on» del serpentín de calefacción	°C	12°C BS÷28°C BS
Simultaneidad del sistema	%	75 - 100
Unidad exterior		Solo SMMSe 8HP
Alimentación		220 - 240V AC 50Hz

Unidad de control del intercambiador DX VRF	RBC-	DXC031	DXC031	DXC031
Kit de válvulas PMV del intercambiador DX VRF	MM-	DXV141	DXV281	DXV281
Capacidad de refrigeración	kW	16,0	22,4	28,0
Capacidad de calefacción	kW	18,0	25,0	31,5
Código de capacidad	HP	6,0	8,0	10,0

Los datos de capacidad de calefacción y refrigeración son orientativos. El diseño del climatizador y del intercambiador DX de cada cliente influirán en el rendimiento real del sistema, Condiciones relativas a la capacidad de refrigeración (Interior 27 °C BS / 19 °C BH & Exterior 35 °C BS) para un caudal de aire estándar, Condiciones relativas a la capacidad de calefacción (Interior 20 °C BS & Exterior 7 °C BS / 6 °C BH) para un caudal de aire estándar,

Esquemáticos Unidad: mm

Tabla de capacidades

			Control del inter- cambiador DX VRF (Individual/Maestro)	Kit de válvulas del Capacidad nominal (kW)		Volumen interno del intercambiador DX (cc)		Capilaridad del líquido recomendada	Air volume flow rate (m³/h)				
	Capacidad en HP	Simultaneidad	RBC-DXC031	MM-DXV141	MM-DXV281	Refrige Mín.	ración Máx.	Calefo Mín.	acción Máx.	Mín.	Máx.		Std
	MMSe 8 75 a 100%	1	1		8	16	7,2	18	1700	3200	5.5 ~ 6	3300	
SMMSe		1		1	11,2	22,4	10	25	3000	4200	6.5 ~ 7	4300	
		1		1	14	28	12,6	31,5	3	5400	7 ~ 8	5000	

Los valores de calefacción y refrigeración están basados en cálculos y en datos generales de pruebas. Todos los valores deben tomarse como aproximados. Las propiedades del intercambiador DX suministrado por otro fabricante afectarán a las prestaciones de las unidades exteriores. El intercambiador DX debe ser adecuado para R410A. El diseño debe permitir el funcionamiento como Evaporador y como Condensador

(Características: Múltiples circuitos / Distribuidor capilar de líquido / Colector de gas). El caudal estándar de aire es una directriz. La capacidad requerida es lo que debe determinar la selección del tamaño de la interfaz DX.

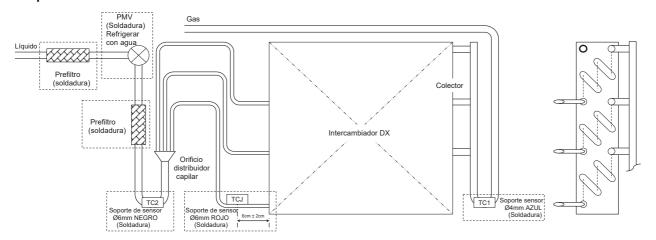
Para el diseño de la interfaz DX debe respetarse el principio de contraflujo

Hay que usar una bandeja de drenaje (aunque solo se use en modo Calefacción), debido a los ciclos de desescarche

Se recomienda incluir placas de eliminación de gotas en el flujo de aire de descarga si se usa en modo Refrigeración.

Triodo retringeración.

Conexión 1:1 La interfaz DX (0-10V) debe conectarse 1:1 con las unidades exteriores Toshiba.


En el RBC-DXC031 solo están disponibles los modos Calefacción y Refrigeración (no hay modo Automático o Solo ventilación).

Entradas y salidas

	Bloque de terminales	Descripción	Tipo	Observacio	nes
	TB4 & 5	Capacidad demandada	Entrada analógica		0/10V
	TB6 & 7	On /Off	Entrada digital		
Entrada	TB8 & 9	Entrada Modo	Entrada digital		
	TB14 & 15	Entrada contacto de seguridad	Entrada digital	NC	
	TB16 & KP1	Entrada error del ventilador	Entrada digital	KP1.14_NO	
	KP2	Funcionamiento del ventilador	Salida digital	KP2.11 & KP2.12_NC / KP2.14_NO	250VAC 6A
	KP3	Salida de alarma	Salida digital	KP3.11 & KP3.12_NC / KP3.14_NO	250VAC 6A
	KP4	Salida de desescarche	Salida digital	KP4.11 & KP4.12_NC / KP4.14_NO	250VAC 6A
	KP5	Control de arranque VRF	Salida digital	KP5.11 & KP5.12_NC / KP5.14_NO	250VAC 6A
	KP6	Pre-desescarche VRF activo	Salida digital	KP6.11 & KP6.12_NC / KP6.14_NO	250VAC 6A
	KP7	Modo calefacción activo / Modo refrigeración activo	Salida digital	KP7.11 & KP7.12_NC / KP7.14_NO	250VAC 6A
	TB10 & 11 (SW1_0)	Capacidad más baja que la capacidad	Salida digital		
Salida	TB12 & 13 (SW2_0)	demandada	Salida digilal		
	TB10 & 11 (SW1_1)	Capacidad más alta que la capacidad	Salida digital		
	TB12 & 13 (SW2_1)	demandada	Salida digilal		
	TB10 & 11 (SW1_2)	Control de recuperación de aceite de			
	TB12 & 13 (SW2_2)	refrigeración VRF /control de recuperación de refrigerante de calefacción VRF	Salida digital		
	TB10 & 11 (SW1_3)	Modo refrigeración activo	Salida digital		
	TB12 & 13 (SW2_3)	Iniodo leingelación activo	Sullaa algilal		
	TB10 & 11 (SW1_4)	- Modo calefacción activo	Calida diaital		
	TB12 & 13 (SW2_4)	Tividad caleiacción activo	Salida digital		

Información adicional

Esquemático del intercambiador DX VRF

- Notas:

 1) El PMV debe refrigerarse con agua durante la soldadura para prevenir daños al mecanismo.

 2) Para garantizar un funcionamiento fiable, todos los soportes de sensor deben fijarse mediante soldadura.

 3) El soporte del sensor TCJ debe soldarse al tubo capilar en el circuito más bajo del intercambiador DX.
- 4) Para la soldadura, asegúrese de utilizar nitrógeno para impedir la oxidación de la superficie interior del tubo.